Question

ut
( frac{4}{x rightarrow c^{2}}-sin left(frac{pi}{x^{2}-1}right)(cos x-1) )
( left.=frac{d t-sin (pi m cdot(cos x-1)}{x^{2}+0^{-}}right) )
( frac{1}{x rightarrow 0}-frac{m x cdot 260(1-cos u)}{x^{n} cdot 2 sin ^{2} x} )
( therefore quad operatorname{ld} x rightarrow 0^{-} )
( n=2 frac{x^{2}}{n^{2} 2} )
Exists
[
operatorname{sum} y n=frac{1}{3}+2
]

# (1-cos” x)) 66. If lim sin x0 exists, where mne N, then the sum of all possible values of n is

Solution