Question

[
n^{3}-13 n^{2}+15 n+189=0
]
Let ( alpha beta ) - be quets
[
begin{array}{l}
alpha+beta+gamma=13-0
alpha beta+beta v+alpha v=15
end{array}
]
( alpha q v=-18 i )
we have fiven diffo of reots id 2
2) ( 8 cdot operatorname{ang} theta+i=h )
a) ( 0 x )
( d) quad operatorname{can} b e )
Right
Leta dhem optim a) - 3,5,7 ( alpha+beta+v=-3+5+7=9 )
which doesn't matan Loith co
( Rightarrow text { Lets Chech option d }]-3,7,9 ) Note ( alpha^{prime}+beta+gamma=-3+7+9=13 )
it matches 80
d) is comeut oppion

# * 1. QUADRATIC EQUATION, METHOD OF INTERVALS & 8 QUADRATIC EXPRESSION 1. / The difference between two roots of the equation x3 – 13x2 + 15x + 189 = 0 is 2. Then, the roots of the equation are (A) – 3, 5, 7 (B) – 3, – 7,-9 FC) 3, -5,7 VDI – 3, 7,9 If ax2 + bx + c = 0 and 2x2 + 3x + 4 = 0 have a common root where a,b,ceN (set of natural numbers), the least value of a + b + cis (A) 13 (B) 11 (C) 7 Log

Solution