Question

( x )
( F(x)=left{begin{array}{c}frac{sqrt{2} cos x-1}{cot x-1} cdot x eq frac{pi}{4} k & , x=frac{pi}{4}end{array}right. )
( Fleft(frac{pi}{4}right): Fleft(frac{pi}{4}+(2)=frac{1}{4-20} frac{sqrt{2} cos h-1}{cot h-1}right. )
o fom l'Hospital nulems ( =u_{100}+frac{sqrt{2} sin h-0}{t operatorname{cosen}^{2} h-0} )
( =4 )
( h rightarrow 0 )
( =0=f(v)=[k=0 )

# ( 12 cos x-1 X If the function e' defined on ( ) by f(x)= cot x-1 cotx-1 '*is continuous, th Ik ,x=- (1) TE (2)2 (3 (4) 1 Let f(x) = 15-x-10;X E R. Then the set of all values of x, at which the function, g(x)=f(f(x)i not differentiable, is (1) {10} (2) {10,15} {5,10,15; (4) {5, 10, 15, 203

Solution