Question
( tan ^{-1}left(frac{1-x}{1+x}right)=frac{1}{2} tan ^{-1} x )
If ( 2 tan ^{-1}left(frac{1-x}{1+x}right)=tan ^{-1} x )
( left.=^{prime} 2 tan ^{-1} x=tan ^{-1} frac{2 x}{1-x^{2}}right] )
( =tan ^{-1}left[begin{array}{c}2left(frac{1-x}{1+x}right) 1-left(frac{1-x}{1+x}right)^{2}end{array}right]=tan ^{-1} x )
if ( frac{2(1-x)}{frac{1+x}{(1+x)^{2}-(1-x)^{2}}}=x cdot )
( frac{1+x y^{7}}{(1+x)^{2}} )
( Rightarrow frac{2(1-x)(1+x)}{x+x^{2}+2 x-1-x^{2}+2 x}=x )
( Rightarrow quad frac{2left(1-x^{2}right)}{244 x}= )
( begin{aligned} 2 x^{2}+3 x^{2} &=2 x^{2} end{aligned} )
( y=x^{2}=1 / 3 )
( x>0 )
( overrightarrow{S O}_{9}=frac{x}{B}=frac{pm 1}{1 / 3} / sqrt{3} cdot B u t )

(2) tan-11* tan 1x x>0 1+x
Solution
