Question

( frac{1}{n+a}+frac{1}{n+b}=frac{1}{c} cdot(1, p+n o+n) )
( Rightarrow frac{n+a+n+b}{(n+a)(n+b)}=frac{1}{c} )
( (2 x+a+b) e=frac{a}{n}+b n+a n+a b )
( Rightarrow quad 2 x+a e+b c=n+b c+a b=0 )
2) ( x^{2}+a n+b n- ) ( 2(a b-a i-b c)=0 )
( Rightarrow quad x^{2}+(a+b-2 c) n+ )
( u_{0}-a-b c )
( 2 alpha=frac{(-a-b+2 c)}{1} )
( alpha cdot beta= )
( alpha^{2}=left(a_{b}-a x-b cright) )
( r )
A) ( arctan left(2(-a-b)^{2}=4right. )
a
( 20 mathrm{b} )
4) 6 12
( a^{2}+b^{2}+2 a )
( Rightarrowleft(2 x^{3}(-5)^{2}+5^{4}right)^{4}-4(2+5) )
2) ( 4 e^{2}+97 b^{2}+2 a b )

# (C) b2 - 4ac If the roots of the equation are equal in magnitude but opposite in sign, then their product is (A) (03 +82) (B) 72 (Q2 +82) (C) Lab (D) 2 ab cu 10

Solution