Question
i) ( m=(log 25) 2=(1.3979) 2 )
2.796
( x=log 220=2 cdot 342 )
( Rightarrow quad m>n )
is. ( m=log 102=2.009 )
( n=log 10 sqrt[3]{10}=left(log 10^{4 / 3}right)=frac{4}{3}= )
( Rightarrow quad m>n )
( begin{aligned} m &=log 105 cdot log 1020+[log (102)] 2 &=2.02 cdot 3.009+2 times 2 cdot 009= & 10+0.6 cdot 0.78+4 cdot 018=10 cdot 096 end{aligned} )
( f(u) quad m=log 1 / 2left(frac{1}{3}right)=left(10-0.3 times frac{1}{3}=-0.1right. )
( n=log 1 / 3left(frac{1}{2}right)=-0.48 times frac{1}{2}=-0.24 )
( Rightarrow quad m>n )
hence in each foll. case mis greataten

[MULTIPLE OBJECTIVE TYPE] choices (A), (B), (C), (D) out of which ONE OR MORE may be correct. Q.12 to Q.13 has four choices (A), (B), (); Q.12 In which of the following case(s) th (A) m=(log25)2 and n=log220 the following case(s) the real number 'm' is greater than the real number'n? (B) m= log102 and n= log10 V10 (1 = and n=log1/3 (D) m=log 1/2 (C) m = log105 log1020 + (log102)2 and n=1
Solution
