Question
Let ( cot ^{-1} x=t )
[
begin{array}{l}
t^{2}-7 t+10>0
(t-2)(t-5)>0
frac{t}{2}-frac{1}{5}
t in(-infty, 2) cup(5, infty)
end{array}
]
( therefore cot ^{-1} x in(-infty, 2) cup(5, infty) )
2) Tref but Rany of cet ( n ) is ( (0, pi) ) ( cot ^{-1} x )
( epsilon quad(0,2) )
( therefore x in(cot 2, infty) )
(2)

* satisfying the inequality (corx)2 – 7(cot1x)+10>0, lie in the interval: (1) (-0, cot 5) u (cot 4, cot 2) (2) (cot 2,00) (3)(-0, cot 5) u (cot 2,00) (4) (cot 5, cot 4)
Solution
