(Te(1-cos” x) 66. If lim sin exists...
Question
Fullscreen

(Te(1-cos” x) 66. If lim sin exists, where x->0 m,ne N, then the sum of all possible values of n is

JEE/Engineering Exams
Maths
Solution
65
Rating
4.0 (1 ratings)
Fullscreen
( 0,1= ) ( 4=-sin left(11left(frac{100005 x^{2}}{x^{2}}right.right. ) ( =frac{mu}{pi-0}-sin left(frac{pi m cdot(cos x-1)}{x^{n}}right) ) ( =frac{mu}{x-2}-frac{m x cdot operatorname{zos} a(1-cos u)}{x^{4} cdot 2 sin ^{2} x} ) ( frac{d}{x^{-}}=0 ) ( x=2 quad{n}^{2}+quad{ }^{prime prime}=1 ) ( lim _{x rightarrow 0} operatorname{sen} frac{2 m x sin ^{2} x}{x^{2} / 4} geq x^{-x^{2}} quad D cdot E ) ( 1, frac{4}{4}^{2} ) ( sin left(frac{pi m}{2}right) ) Exists ( sin g n=frac{1+2}{3} )
Quick and Stepwise Solutions Just click and Send Download App OVER 20 LAKH QUESTIONS ANSWERED Download App for Free