Question
[
begin{array}{l}
x^{2}+2 x+2
quad==frac{d x}{d x}
end{array}
]
of differntiale (1) wre
Pwe if in equation
[
v=frac{1}{2(t+2)^{frac{1}{2}}}
]
arceleralion ( frac{d^{2} x}{2 t^{2}}=frac{50}{2(u+1)} )
writlen write ( frac{d x}{d t}=frac{1}{d t} )
equatio
(2) sun le ( frac{d}{d t}left(frac{d x}{d t}right)=frac{d}{d t}left(frac{1}{2(x+1)}right)=frac{d^{2} x}{d t^{2}}=frac{partial}{d t}left(frac{(h+1)^{12}}{2}right) )
( =-frac{1}{2}(x+2)^{-1-1} )
( a^{2}=frac{-v}{2(x+1)^{2}}= )

1) 12 m/s (D) 10 m/s2 In the one-dimensional motion of a particle, the relation between position x and time t is given by x2 + 2x = t (here x > 0). Choose the correct statement : (A) The retardation of the particle is (B) The uniform acceleration of the particle is (C) The uniform velocity of the particle is (x + 1)3 2 (D) The particle has a variable acceleration of 4t +6.
Solution
