Question

Civen
( x^{2}=4+z, y^{2}=z+x, z^{2}=x+y )
( frac{1}{1+x}+frac{1}{1+y}+frac{1}{1+z} )
( frac{1+x-x}{1+x}+frac{1+y-y}{1+y}+frac{1+z-z}{1+z} )
( 1-frac{x}{1+x}+1-frac{y}{1+y}+1=frac{z}{1+z} )
( 3-left(frac{x}{1+x}+frac{y}{1+y}+frac{z}{1+z}right) )
( 3-left(frac{x^{2}}{x+x^{2}}+frac{y^{2}}{y^{2}+y^{2}}+frac{z^{2}}{z+z^{2}}right)left(begin{array}{c}text { MULTIPLITD } text { NUMERHOR } 4 text { DENONINATOR }end{array}right. )
( .44 z )
( operatorname{in} 3+operatorname{ten} 45 )
( =3-left(frac{4+2}{x+4+z}+frac{z+x}{4+z+x}+frac{8 x+y}{z+x+4}right)^{prime} )
( =3-left(frac{2 x+2 y+2 z}{x+y+z}right) )
( =3-2 )
( =1 )

# 1 if x2 = y + zy2 = Z + x, Z2 = x + y, then the value of is X+1 y +1 2+1 (A) - 1 (B) 1 (D) 4 (C) 2

Solution