Question

( A=frac{a+b}{2}, quad G=sqrt{a b}, quad H=frac{2 a b}{a+b} )
So ( quad A H=frac{9+6}{2} times frac{296}{9+6}=96=5^{2} )
( A H=C^{2} )

# 11. If the arithmetic, geometric and harmonic means between two positive real numbers be A, G and H, then 12. (A) A2 = GH (B) HP = AG (C) G=AH (D) G2 = AH If the roots of alb-c)x² + b(c-a)x+C (a - b) = 0 be equal, then a, b, c are in (A) A.P. (B) G.P. (C) H.P. (D) None of these

Solution