Question
ABCD be a parallelogram uircumscri a iicle with centre 0 Given - bing is a
To puone: Rhom bus.
Isof: We know the tangents dearsn to a circle fom an entecioc point are equal in length
( therefore A P=A S, B P=B Q, C R=C Q, D R=D S )
AdLerg all aboue ( =13 )
( A P+B P+C R+D R=A S^{prime}+B 9+C O+D S )
[
begin{array}{l}
A P+B P)+(C R+P B)=(A S+D S)+(B Q+(theta)
A B+C D=A D+B C
2 A B=2 B C
end{array}
]
( A S quad A B C D )
g ( A B=D )
and ( A D=B C ) : ( A B=B C )
[
A B=B C=omega C=A D
]
ABCD in rhombus

11. Prove that the parallelogram circumscribing a circle is a rhombus.
Solution
