Question

Ulinen
[
A=left[begin{array}{ll}
3 & 5
4 & -2
end{array}right] times B=left[begin{array}{l}
2
4
end{array}right]
]
Here order of A is ( 2 times 2 ) 8 Orraler of ( B ) is ( 2 times 1 ) So they qire contomal for the produet of ( A B ) of order ( 2 times 1 . )
Now,
[
begin{aligned}
A B &=left[begin{array}{lc}
3 & 5
4 & -2
end{array}right]left[begin{array}{l}
2
4
end{array}right)_{2 x_{1}}
=left[begin{array}{l}
3 times 2+5 times 4
2 times 4-2 times 4
end{array}right]_{2 x_{1}}
=left[begin{array}{lll}
6 & +20
8 & -9
end{array}right]_{2 x}
end{aligned}
]
( =left{begin{array}{l}2 mathrm{c} 0end{array}right]_{2 times 1}, underline{A} )

# 12 If A = [35] and B = 4, is the product AB possible ? Give a reason. If yes, find AB.

Solution