Question
( left(1+frac{1}{2 x}right) log 3+log 2=log (27-sqrt[3]{3}) )
( 3^{left(1+frac{1}{2 x}right) cdot 2}=3^{3}-3^{1 / x} )
( 3^{left(1+frac{1}{2 x}right)(3-1)}=3^{3}-3^{1 / x} )
( 3^{left(2+frac{1}{2 x}right)}-3^{left(1+frac{1}{2 x}right)}=3^{3}-3^{1 / x} )
comparing coefficients we get, begin{tabular}{c|c}
( 2+frac{1}{2 x}=3 ) & ( 1+frac{1}{2 x}=frac{1}{x} )
( frac{1}{2 x}=1 ) & ( 1=frac{1}{2 x} )
( sqrt{x}=1 / 2 ) & ( frac{x=1 / 2}{1} )
end{tabular}
( x=1 / 2 )

12. ( log 3- og 2. log(27-V3)
Solution
