Question

( because 1+w+w^{2}=0 quad & w^{3}=11 )
( Rightarrow quad 1+2 w+w^{2} ) to ( n ) imple ( w )
( q quad 1+w+2 w^{2} ) is simply ( w^{2} )
( therefore quad omega^{3 n}-left(omega^{2}right)^{3 n} )
( =-omega^{3 n}-omega^{6 n} )
( =left(omega^{3}right)^{n}-left(omega^{3}right)^{2 n} )
( =(+1)^{n}-(+1)^{2 n} )
( =(+1)^{n}-(1) )
Ple give
( =1-1 quad ) rating. ( =0 )
1) thes : Solred by an 11Tian.

# 13) 3 15. (1 + 20 + m2)3n – (1 + 6 + 202)3n = (1) 0 (3) @ (2) 1 (4) 07

Solution