Question

( y=x^{x^{x}} )
( log y=x^{x} log x )
( Rightarrow quad z=x^{x} )
( Rightarrow quad log _{j}=x log x )
( Rightarrow frac{1}{3} frac{d g}{d x}=(1+log x) )
( Rightarrow quad frac{d_{3}}{d x}=x^{x}(1+log x) )
from (1) ( log y=x^{2} log x )
( Rightarrow frac{1}{y} frac{d y}{d x}=x^{x}(17 lg x) log x+frac{x^{x}}{x} )
( Rightarrow frac{d y}{d x}=x^{x^{x}} cdot x^{x}left[(1+log x) log x+frac{1}{x}right] )

# 13. If y=x*then the value of dy/dx is

Solution