Question

( dot{V}=u+a l )
( 0+u+[(g+2)] t )
( u=t(g+2) )
( 9 t=4 /(g+2) )
( v^{2}-4=2 a s )
( Leftrightarrow(0)^{2}-u^{2}=2[-(g+2) s] )
( left.s=frac{u^{2}left(c g^{x}right)^{2}}{a^{t}+1 / 2^{x}}=0^{x^{2}} times y_{2} times g^{-2}right) times f^{-2} )
( frac{5 u t^{x}}{u^{2} 1left(g x^{2}right)} )
7
( sqrt{9^{2}-4} )
Tin
Timer
( sqrt{96 / 12} )
56135: 20
( x_{0} T=sqrt{6}: 3 frac{3}{2} )

# 14. A particle is thrown upwards from ground. It experiences a constant air resistance which can produce a retardation of 2 m/s2 opposite to the direction of velocity of particle. The ratio of time of ascent to the time of descent is : [g = 10 m/s?] (1) 1:1 (2) (3) WIN

Solution