Question
( 14 .(3) )
begin{tabular}{c|l}
2 & 4320
hline 2 & 2160
hline 2 & 1080
hline 2 & 540
hline 2 & 270
hline 3 & 135
hline 3 & 45
hline 3 & 15
hline 5 & 5
hline 1 & 1
hline
end{tabular}
[
4320=overline{2 times 2 times 2} times 2 times 2 times overline{3 times 3 times 3} times 5
]
Clearly, to make 4320 a perfect cube, it must be multiplied by ( 2 times 5 times 5 ) i.e. 50 .

14. By what least number 4320 be multiplied to obtain a number which is a perfect cube? (1) 25 (2) 100 (3) 50 (4) 5
Solution
