Question
( x^{2}+p x+q quad 4 quad x^{2}+m x+n )
(c) a) is factor for both polynomials ( therefore e_{cdot}, x^{2}+p x+q=(x+a)(x+underline{theta})_{4} )
( x^{2}+m x+n=(x+a)(x+beta) )
If ( f^{2}+P x+q=(x+a)(x+alpha)=0 )
[
begin{array}{l}
text { If } x=-a
begin{aligned}
(a)^{2}-p a+q &=0
a^{2}-p a+q &=0 rightarrow 0
end{aligned}
end{array}
]
If ( x^{2}+m x+n=(x+a)(x+beta)=0 )
If ( x=-a )
[
begin{array}{c}
a^{2}-m a+n=0 rightarrow(2)
e q 0-e x(2)
a^{2}-p a+q-a^{2}+m a-n=0
a(m-p)=n-2
quad a=frac{n-q}{m-p}
end{array}
]

16. If (x+a) is the factor of the polynomial x4px+q and x-mxin, prove that a
Solution
