Question

( (x)=x^{2} )
enco of ( f(x,)=fleft(x_{2}right) )
( frac{x^{2}}{x^{2}-x_{2}^{2}}=x_{2}^{2} )
( left(x_{i}-x_{2}right)^{infty}left(x_{1}+x_{2}right)=0 )
( frac{00}{x_{1} leq x_{2}} )
Hem is one one
8
( f(x)=y )
( x^{2}=8 )
( x=pm sqrt{y} )
( 60 quad x=sqrt{y} )
( x=y=R^{+} )

# 16. Let X and Y be subsets of R, the set of all real numbers. The function f.X - Y defined by f(x)= x XEX is one-one but not onto if (Here R* is the set for of all positive real numbers) (a) X=Y=R* (6) X= R.Y=R* (c) X = R',Y= R (d) X = Y=R

Solution