Question
( x+y+z=6 )
( frac{x}{2}+frac{x}{2}+y+3=6 )
( frac{A M geqslant G M}{frac{x}{2}+frac{x}{2}+y+3}>,left(frac{x}{2} cdot frac{x}{2} cdot y cdot 3right)^{1 / 4} )
( Rightarrow frac{x+y+3}{4} geqleft(frac{x^{2} y z}{2^{2}}right)^{1 / 4} )
( Rightarrow quad frac{3}{2} quad geqslantleft(frac{x^{2} y partial}{4}right)^{1 / 4} )
( Rightarrow quad frac{81}{16} geqslant, frac{x^{2} y 3}{4} )
( Rightarrow quad x^{2} y z leqslant frac{81}{10 x 4} )
option ( A )
Maximum value
of ( x^{2} y z=frac{81}{4} )

175. Ifx+y+z=6, (x, y, z>0), then the maximum value of x2yz is (A) 81/4 (B) 27 / 4 (C) 115/4 (D) 91/4
Solution
