Question

Page
since point are ( A(p, q), B(m, n) ) ( c(p-m, q-n) )
Aread ( Delta=frac{1}{2}left(x_{1}left(y_{2}-y_{3}right)+x_{2}left(y_{3}-y_{1}right)+x_{3}left(y_{1}-y_{2}right)right) )
( 0=frac{1}{2}(p(n-q+u)+m(q-n-q)+(p-m)(q-n)) )
( 0=p(2 n-2)+m(-n)+(p-m)(q-n) )
( 0=2 p n-9 p-m(n+p q-p n-m q+m k n )
( 0=2 p n-p n-m q )
( 6=p n-m q )
mq = ph

# 18. Show that the points (5,6), (1,5), (2,1) and (6,2) are the 19. The points (p,g); (m,n) and (d-m,q-n) are collinear. Show that pn=qm

Solution