Question

oo ( f(t)=left[begin{array}{ccc}cot t & t & 1 2 sin t & t & 2 t sin t & t & tend{array}right] )
( f(0)=0 )
( lim _{t rightarrow 0} frac{f(t)}{t^{2}} )
It is coming of form
: ( ^{circ} ) as wing ( D^{prime} L ) hos ( N ) tal rule
( lim _{t rightarrow 0} frac{f^{prime}(t)}{2 t} )
again diff ( lim _{t rightarrow 0} frac{f^{prime prime}(t)}{2} )
( therefore frac{lim _{t rightarrow 0} f^{prime prime}left(frac{A}{2}right)}{2}=frac{f^{prime prime}(0)}{2} )
( f^{prime prime}(t)=left[begin{array}{ccc}-cos t & 0 & 0 -2 sin t & 0 & 0 -sin t & 0 & 0end{array}right] )
( f^{prime prime}(0)=0 )
of ( lim f^{prime prime} frac{(t)}{2}=0 )
( t rightarrow 0 )

# 2) 403 ) cott t 1 16. If f(t) = 2 sint t 2t then - lim f(t). 2 is [ sint et equal to 10 2-1 32 4) 3 17. IfA and B are invertible matrices, then which of the follyning is not correct?

Solution