Question
( 1-tan ^{2} theta=k^{2} )
( 1-left(sec ^{2} theta-1right)=k^{2} )
( sec ^{2} theta=2-k^{2} )
( sec theta=sqrt{2-k^{2}} )
( =sec theta+tan ^{3} theta cdot sin theta cdot frac{1}{cos theta} sin theta )
( =sec theta+tan ^{2} alpha cdot sec theta )
( =sec thetaleft(1+tan ^{2} thetaright) )
( =sec theta cdot sec ^{2} theta )
( =intleft(2-k^{2}right)^{3} )

2. If 1 - tan20 = K2, then the value of (seco + tan30 , coseco) is equal to (1) V(1—62)3 (2) V(2-K²3 (3) V(3 – K2,3 (4) 1(2+ k?)3
Solution
