Question
[
begin{array}{l}
c^{n} d 1 cdot 25 m / s^{2}
t=8 s
end{array}
]
( S(text { distance } operatorname{traveled} operatorname{in} 88)=frac{1}{2}(8)^{2}(1-25) )
[
s=40 mathrm{m}
]
( begin{aligned} v(text { velocify after } 8 s) &=(1.25)(8) &=4 n / s end{aligned} )
For stone
[
S=u t+frac{1}{2} a t^{2}
]
( Rightarrow-40=10(t)-frac{1}{x}left(t^{5}right) t^{2} )
a ( frac{5 t^{2}-10 t-40=0}{frac{t^{2}-2 t-8}{5}=0}+begin{array}{l}t=-2,4 x_{1}end{array} )
( therefore sqrt{t}=4 )
Q maxm height of etome fuom ground = ( 90 mathrm{m} )
(11) tine laker loy stowe to resen groud = 4 sec

3. A balloon starts rising from the ground with an acceleration of 1.25 m/s2. A stone is released from the balloon after 10s. Determine (1) maximum height of stone from ground (2) time taken by stone to reach the ground
Solution
