Question

(i) Fon suflexive ( (a, b) R(a, b) )
( a+b=b+a )
( +b_{0}:left(a_{1} bright) R(a, b) )
symetric
( (a, b) quad R(x, d) quad(c, d) quad R(a, b) )
( a+d=b+c )
( a+d=c+b )
for symmetic itis prove
( therefore )
( (a, b),(c, d), quad(e, j), quad ) Then shoraw
( (a, b) R(c, d) mid quad(c, d) R(e, 1) quad(e, i} )
( =b+c )
( =b+alpha+e-f )
( =b+a+d+e^{-1} )
( =b+c )
the rwe ( a(e, f) R(a, b) )

# 3. Show that the relation R on the set Nx N defined as (a,b) R (c,d) iff a+d=b+c an equivalence relation.

Solution