Question

( t=p x^{2}+d x )
differentiale w.r. I. time
( frac{d t}{d t}=P(2 x) cdot frac{d x}{d t}+d cdot frac{d x}{d t} )
( Rightarrow 1=2 P x cdot V+d cdot V )
differentiate again
( Rightarrow quad 0=left[operatorname{Pr} frac{d v}{d t}+2 p v cdot frac{d x}{d t}right]+d cdot frac{d v}{d t} )
( Rightarrow quad 0=2 P x cdot a+2 P V^{2}+4 a )
( Rightarrow quad(2 P x+phi) a=-2 P V^{2} )
( Rightarrow a=frac{-2 p v^{2}}{2 p x+c y} )

# 3/ The relation between the time t and position x for a particle moving on x-axis is given by t = px2 + qx, where p and q are constants. The relation between velocity v and acceleration a is as (2) a a v? (4) a av Ta a po (3) a av

Solution