Question
( frac{1}{lambda}=R z^{2} )
As electron jumpi prom nuel to n ( n_{2}=n+1, quad n_{1}= )
velouity - pequenty x waveleng th
( frac{text { velouty }}{lambda}- ) frequency
( f=frac{v}{lambda} )
( f=vleft[R 8^{2}left[frac{1}{n^{2}}-frac{1}{(n+1)^{2}}right]right. )
( f=operatorname{VRz}^{2}left[frac{2 n+1}{n^{2}[n+1]^{2}}right] )
( f=v R z^{2}left[frac{n[2+1 / n]}{n^{2}[n+1]^{2}}right] )
( left.f=sqrt{R} z^{2}left[frac{1}{n cdot n^{2}left[1+frac{1}{n}right]^{2}}right] begin{array}{c}2[2+1 / n] a s n>>1end{array}right] )
( Rightarrow f=frac{2 sqrt{R} z^{2}}{13} )
( fleft(frac{1}{infty}=0 Rightarrow frac{1}{n}=0right. )

40. When an electron makes a transition from (n + 1) state to nth state, the frequency of emitted radiations is related to n according to an >> 1): (A) v = 2cRZ? (B) v = CRZ (C) » - CRZ (D) v = 2CRZ
Solution
