Question

The Oudrahic equahon is ( x^{2}-(alpha+beta) x+alpha_{1} beta )
( =x^{2}-left(frac{20+beta}{alpha}+frac{alpha+beta}{beta}right) x+frac{(alpha+beta)^{2}}{alpha beta} )
( Rightarrow x^{2}-left(frac{8^{2}+alpha beta+alpha^{2}+alpha beta}{alpha beta}right) x+frac{(alpha+B)^{2}}{alpha beta} )

# 5. Let k be a real number such that k 0. If a and B are non zero complex numbers satisfying a + B = - 2k and Of + BP = 4k? - 2k, then a quadratic equation having a+ and C+B as its roots is equal to (B)x - 46x + 4k=0 (A) 4x2 - 4kx + k=0 (C) 4kx² - 4x + k = 0 (D) 4kx² - 4x + 1 = 0

Solution