Question

from fig, we can oay that
( angle P varphi T=L T R R )
( L T R P=L T R S )
( because angle Q P R+angle P O R=angle P R S quadleft(begin{array}{c}text { Sum of } text { interion on } pend{array}right. )
( Rightarrow quad frac{1}{2} log R+frac{1}{2} ) LP ( varphi R=frac{1}{2} ) LPRS
andey
( Rightarrow quad frac{1}{2} operatorname{LPP} R+angle operatorname{TPR} mathbb{E}=operatorname{LTRS}-C )
( operatorname{In} Delta Q T R )
( angle T Q R+angle Q T R=L T R S )
(1) / Scun of int anple)
( 0-(11) )
>) ( frac{1}{2} log P R-angle operatorname{gln}=0 )
( Rightarrow quad L g T R=frac{1 L text { pPR }}{2} ) haved. ( quad f(2 ) sine

# 6. In Fig. 6.44, the side QR of APQR is produced to a point S. If the bisectors of Z PQR and Z PRS meet at point T, then prove that ZQTR = QPR. R Fig. 6.44

Solution