Question
( sqrt{x}+y=7, x+sqrt{y}=11 )
Let ( sqrt{x} ) and ( sqrt{4} ) be a and ( b ) ( a+b^{2}=7 )
( a=7-b^{2} )
Putting value in ( x+sqrt{y}=a^{2}+b=11 ) ( left(7-b^{2}right)^{2}+b=12 )
( 49+64=14 mathrm{b}^{2}+mathrm{b}=1 mathrm{L} )
( b^{4}-14 b^{2}+b+38=0 )
By. hit and tijal method Factor of ( 30=2 times 2 times 19 ) If we ( p 452 ) on beloce ( (2)^{4}-14 times(2)^{2}+2+30=0 )
[
26-14 times 4+40=0
]
( 16-56+40=0 )
( 56+56=0 )
[
b=2
]
( 9=7-4 )
( 9=3 )
( 3 c=9, y=4 )

7 | L on व ५ - 7 ५ ।।। ५ ६ मान 41 ) ।
Solution
