Question

( f(x)=log |x|+frac{1}{sqrt{|x|}}+frac{1}{lg |x|} )
for ( log |x|, quad|x|>0 Rightarrow x in R )
for ( frac{1}{log |x|}, frac{1}{log |x|} eq infty=log |x| eq 0 )
( Rightarrow|x| eq 1 Rightarrow x eq-1 ) &x ( x eq 1 )
for ( frac{1}{sqrt{121}}, quad begin{array}{l}sqrt{|x|} eq 0 quad 8 quad|x|>1 Rightarrow x eq 0end{array} )
( Rightarrow ) Domain of ( f(x)=R-{0,1,-1} )
( Rightarrow A={0,1,-1} )
Ophion (a)

# 7. The domain of f(x) = log|x] + t log|xí R-A where A is the set (a)(-1,0,1} (b){-1,1} (c){2,3,4} (d) {0,1,2) g. 241

Solution