Question
( log _{2} a=5-0 )
( 25+5left(25^{2}right)-4 times frac{3}{7}left(5^{3}+1right) )
( Rightarrow quad 2^{2} 25+10 s^{2}-3 s^{2} )
( log _{2} 26={5}^{2}=1 / 2 log _{2} b=5^{2} )
( log _{2} 6=2 s^{2}-(10 )
( log _{c} 28=frac{2}{8^{3}+1} )
( Rightarrow log _{c^{2}} 2^{3}=frac{2}{s^{3}+1} )
( Rightarrow quad frac{s^{3}+1}{2}=log _{2} x^{2} )
( Rightarrow quad frac{s^{5}+1}{2}=frac{2}{3} log _{2} c )
( log _{20} c=frac{3}{4}left(s^{3}+1right) )
и:
어
( log _{2}left(frac{a^{2} b^{5}}{c^{4}}right) )
( log _{2} a^{2}+log _{2} b^{5}-log _{2} c^{4} )
( log _{2} a+5 lg _{2} b-4 log _{2} c )
( ln y theta cos 4 )
Teactier:

77 +3 1.10+2121 a'bs Given that log, a=s, log, b = s2 and log.z (8) = 3 . Write log2 as a (a,b,c>0, C+1).
Solution
