Question

( left|x^{2}-5 xright| geqleft|x^{2}right|-|5 x| )
( |x(x-5)|>x^{2}-5|x| )
( left(begin{array}{l}m(x-5) /=int x(x-5), x<0 -x(x-5), 05end{array}right. )
Sis, fro ( n<0 ) ( x(x-5)>x^{2}+5 x )
( 10 x<0 Rightarrow[x<0 )
fir ( 0x^{2}-5 x )
[
-x^{2}+5 x>x^{2}-5 x
]
( 2 m^{2}+10 n<0 )
( sin (x-5)<0 )
( frac{theta(theta)}{sigma} Rightarrowleft[frac{10 times 10}{5}right] v )
So, ( x in(-infty, 0) cup(0,5) )
Thes value of a 180 ie ( frac{13}{text { correl }} ) is
Dle ese jive your feed back

# 89. ITX- 5x > X2- 15x = Xe (-, a) (a, 5) then the value of (A) 2 (B) O (D) none of these (C) 1

Solution