Question

Let no. of ( 25 mathrm{p} ) coins be ( -x )
Let no. ot ( 50 mathrm{p} ) coins be ( -mathrm{J} )
[
text { Total amount }=left{begin{array}{ll}
2 & 12.50
end{array}=1250 mathrm{P}right.
]
( n )
[
25 x+50 y=1250
]
fiven that
( x+y=40 )
( operatorname{saning} theta+4 )
In (1) livide ( 5 y^{2}=5 )
( x-4^{2} y=50 )
Sduing ( (3)+(2 Rightarrow 3) )
( x+2 y=50 )
[
begin{array}{l}
frac{-x+y=40}{0+y=10}
frac{y=10}{25 p operatorname{coins}=30}=frac{x=30}{5}
end{array}
]
SOP coins ( =10 )

# A lady has 25 p and 50 p coins in her purse. If in all she has 40 coins totalling 12.50, find the number of coins of each type she has.

Solution