Question
( cos ^{3} theta+cos ^{3} 2 theta+3 cos theta cos ^{frac{1}{2}} thetaleft[cos ^{frac{1}{sqrt{2}}}+cos 2 thetaright] )
( sin ^{3} theta+cos ^{3} 2 )
( 3 cos theta cos 2 theta[tan theta+cos 2 theta]=0 )
( operatorname{coth} alpha quad cos theta=0, cos 2 theta=0 )
or ( cos theta+cos 2 theta=0 )
( cos theta=0 ) gives ( theta=90^{circ} )
( cos 2 theta=0 ) given ( theta=45^{circ} )
( cos theta )
Far
for ( cos theta+cos 2 theta=0 ) we how
( cos theta=-left[2 cos ^{2} theta-1right] )
( cos theta=-2 cos ^{2} theta+1 )
( Rightarrow quad 2 cos ^{2} theta+cos theta-1=0 )
[
operatorname{lot} quad cos ^{2} theta=x-0
]
( 2 x^{2}+x-1=0 )
Ow distic foummed ( x=frac{-1 pm sqrt{(1)^{2}-4(2)(-1)}}{62 times 2} )
( Rightarrow x=frac{-1+3}{4} quad x-frac{1-3}{4} )
( x=frac{-1 pm 3}{4} Rightarrow )
( x=frac{1}{2} ) or ( x=-1 )
far ( f log m ) (0) ( x=cos ^{2} theta )
So for ( x= )
( 7 cos theta=pm frac{1}{sqrt{2}} )
1

a. Ma la creat color anita me to me we 4. If (cose + cos20)3 = cose + cos20, then the least positive value of 0 is equal to - er in AIBI nla
Solution
