Question

( frac{d x}{d x}=alpha sqrt{x} )
( Rightarrow frac{d x}{sqrt{x}}=2 d t )
( Rightarrow int x^{-1 / 2} d x=int alpha d t )
( Rightarrow quad 2 sqrt{x}=alpha eq+c )
at ( t=0, n=0 Rightarrow c=0 )
( Rightarrow 2 sqrt{x}=alpha t )
( Rightarrow quad x=frac{alpha^{2} t^{2}}{4} )
( Rightarrow frac{d x}{d t}=V=frac{alpha^{2} t}{2} )
( a=frac{d v}{d t}=frac{alpha^{2}}{2} cdot ) constant

# A particle located at x = 0 at time t=0.starts moving along the positive x-direction with a velocity v 'which varies as v= avx, then velocity of particle varies with time as: (a is a constant)

Solution