Question
Put ( x=y=0 )
( f(0)=f(0) f(0)-f(a) f(a) )
( begin{array}{ll}1= & 1-(f(0))^{2} Rightarrow & f(a)=0end{array} )
Let ( (2 a-x)=a-(a-x) ) ( a-(x-a) )
[
begin{array}{c}P omega t x=9 & y=x-aend{array}
]
( f(2 a-x)=f(a) f(x-a)-f(0) f(x) )
( f(2 a-x)=frac{1}{0}-f(x) )

A real value function f(x) satisfies the function equation f(x - y) = f(x) f(y) - f(a - X) Ta where a is a given constant and f(0) = 1, f(2a - x) is equal to (A) f(a) + f(a - x) (B) f(-x) (C)-f(x) (D) f(x)
Solution
