Question

Total distance travelled = S Time taken for the 3 parts 18 the Journey is ( t, quad t=2 t 3 ) respectively and speed during the 3 parts ( y_{5} ). Journey is ( v_{1}, v_{2}, v_{3} ) respectively
Distence corered in part of ( 104 mathrm{rney}=frac{5}{2} )
( Rightarrow t_{1}=left(frac{s}{3}right) / v_{1}=frac{s}{3 v_{1}} )
( t_{2}=left(frac{S}{3}right) / v_{2}=frac{s}{3 v_{2}} )
( t )
( 3=left(frac{5}{3}right) / v_{3}=frac{5}{3 v} )
To-ta
( =left(frac{5}{3}right)left(frac{1}{v_{1}}+frac{1}{v_{2}}+frac{1}{v_{3}}right) )
Avg ispeed ( =operatorname{Vang}=frac{s}{t} )
( frac{s}{(s / 3)}left(frac{1}{v_{1}}+frac{1}{v_{2}}+frac{1}{v_{3}}right) )
( =frac{1}{(1 / 3)}left(frac{1}{v_{1}}+frac{1}{v_{2}}+frac{1}{v_{3}}right) )
( =1 frac{1}{left(v_{2} v_{3}+v_{3} v_{1}+v_{1} v_{2}right) /left(3 v_{1} v_{2} r_{3}right)} )
( operatorname{varg}=left(3 v_{1} v_{2} v_{3}right) /left(v_{1} v_{2}+v_{2} v_{3}+v_{3} v_{1}right) )

# B-2. A particle covers each of the total distance with speed V1, V2 and v3 respectively. Find the average speed of the particle ? ration

Solution