Question
( alpha^{2}=5 alpha-3= )
( Rightarrow quad alpha^{2}-5 alpha+3=0 quad alpha=frac{5 pm sqrt{25-12}}{2} )
( B^{2}=5 beta-3 quad ) So, ( quad beta=frac{5 pm sqrt{13}}{2}=frac{5 pm sqrt{13}}{2} )
So, ( hat{M}=frac{5+sqrt{13}}{2} )
( beta=frac{5-sqrt{13}}{2} )
( frac{alpha}{beta}=frac{5+sqrt{13}}{5-sqrt{13}}, frac{beta}{alpha}=frac{5-sqrt{13}}{5+sqrt{13}} )
( frac{alpha}{beta} times beta_{alpha}=1=frac{C}{a} )
( frac{alpha}{beta}+frac{beta}{alpha}=frac{alpha^{2}+beta^{2}}{alpha beta}=frac{25+13+25+13}{25-13} )
( Rightarrow frac{frac{78}{12}}{frac{12}{3}}=frac{19}{2} )
( x^{2}-frac{19}{3} x+1=0 )
requined quadratic equatuon.

B :- Ja Max&B x2= 52-3 3= 58-3 find the Garad. whose roots are
Solution
