Question # (c^{2}=a^{2}+b^{2}) then ( 4 s(s-a)(s-b)(s-c)= )

# (c^{2}=a^{2}+b^{2}) then ( 4 s(s-a)(s-b)(s-c)= )

1. (b^{2})

2) ( a^{2}+b^{2} )

3) ( frac{a^{2}}{b^{2}} )

4) ( a^{2}-b^{2} )

Solution

( 2 s=a+b+c )

( s=(a+b+c) / 2 )

By Heron's formula

Area ( =(s(s-a)(s-b)(s-c)) 1 / 2 )

( a 2+b 2=c 2 )

( mathrm{Area}=1 / 2 * mathrm{a}^{*} mathrm{b} )

( (s(s-a)(s-b)(s-c)) 1 / 2=1 / 2 * a^{*} b )

( s(s-a)(s-b)(s-c)=a 2 b 2 / 4 )

( 4 s(s-a)(s-b)(s-c)=a 2 b 2 )