Question

Time taken
ORbit
[
T=frac{d i text { is }}{text { velocity }}=frac{2 pi r}{v}
]
We know radius of Bohr's odit ( (gamma)=0-529 times frac{n^{2}}{2} ) A
[
begin{aligned} &=0.529 times frac{n^{2}}{2} times 10^{10} end{aligned}
]
[
begin{array}{l}
text { & } bar{V}=2.188 times frac{z}{n}
text { Aftes solving we get } T=1.52 times 10^{-16} times frac{n^{3}}{2^{2}} text { see }
end{array}
]
nud to find the ratio of time
for the ( ^{+} quad n=2, quad z=2 )
fir ( operatorname{ci}^{2} t quad n=4, quad z=3 )
( therefore ) ratio
( frac{pi}{T_{L i}^{2+}}=1.52 times 10^{16} times frac{(2)^{3}}{(2)^{2}} )
[
1.52 times 10^{-16} timesleft(frac{4)^{3}}{(3)^{2}}right.
]
( =frac{8}{4} times frac{9}{648}=frac{9}{32} )
". the ratio is 9: 32 ( Rightarrow quad frac{n^{3}}{22} mid ) for ontr ofher species / atoms

# C-46 Find the ratio of the time period of 2- Bohr orbit of He' amd 4" Bohr orbit of Lj.

Solution