Question
( f(x)=frac{1}{sqrt{[x]^{2}-5(x]+6}} ) is real onfy when
( int cos 2 x operatorname{sen}(x)(x) d x )
( Rightarrow quad[x]^{2}-5[x]+6 quad geq 0 ) (othen wise ( f(x) ) will
( {x]^{2}-2[x]-3[x]+6 geq 0 )
( [x]([x]-2)-3([x]-2) geq 0 )
( ([x]-3)([x]-2) geq 0 )
( Rightarrow[x-3 geq 0 text { or }[x]-2 geq 0 )
( Rightarrow quad[x] geq 3 quad ) or ( [x] geq 2 )
( Rightarrow quad[x] in[3, infty) )
it can be witten as ( rightarrow ) ( [x] in[4, infty) )
all offions are sane ( left[begin{array}{ll}text { Hild you } & text { rindly check your dues }end{array}right. )

Choose the correct answer: 1. ) The domain of f(x) = F, (where V[x]? – 5[x] + 6 denotes greatest integer function) is (1) (-20, 2) [4.a) (2) 1, 2] _ [4,) (3) 1-06. 2) (4,00) (4) S-002 2] U14
Solution
