Question

( =L )
Let ( frac{lim _{D}(cos x)}{x-0} )
faking log ( log L=log left[lim _{x rightarrow 0}(cos x)^{cot x}right. )
( log L=lim _{x rightarrow 0} log (cos n)^{cot x} )
( left[=log m^{n}=n log mright] )
( Rightarrow log L=lim _{x rightarrow 0} cot x log (cos x) )
( [0 . infty quad text { form }] )
( therefore log L=lim _{x rightarrow 0} frac{log (cos x)}{tan x} )
s) ( log L=lim _{x rightarrow 0}left(-tan x cos ^{2} xright) )
3
( log L=-0 times(1)^{2} )
I ( quad log L=0 )
( Rightarrow quad L=e^{0}=1 Rightarrow mid frac{L=1}{text { oplion }(c)} )

# co 47. The lim (cos x) cotx is X- 0 (2) - 1 (c) 1 (b) 0 (d) None of these

Solution