Question
( operatorname{atan} alpha+b tan beta=(a+b) tan left(frac{alpha+beta}{2}right. )
( aleft(frac{sin alpha cos left(frac{alpha+beta}{2}right)-cos alpha cdot sin left(frac{alpha+beta}{2}right)}{cos alpha cos left(frac{alpha+beta}{2}right)}right)=-left(sin beta cos left(alpha frac{phi}{2}right)-cos beta+betaright) )
( Rightarrow a frac{sin left(frac{alpha-alpha+beta}{2}right)}{cos alpha}=frac{-b sin left(beta-frac{alpha+beta}{2}right)}{cos beta} )
( =frac{a sin left(frac{alpha-beta}{2}right)}{cos alpha}=frac{-b sin left(frac{beta-alpha}{2}right)}{cos beta} )
( Rightarrow frac{a sin left(frac{a+p}{2}right)}{cos alpha}=frac{b sin left(frac{a+beta}{2}right)}{cos beta} )
( Rightarrow frac{cos x}{cos beta}=frac{9}{6} )

D afa 78 and a hana + b tan B = (916) tan Show that Cosa - cos B
Solution
