Question
Given: ( quad a, brangle quad 0 )
[
& a^{3}+b^{3}=a-b
]
( Rightarrow quad a^{3}+b^{3}=a^{-b}=b )
( a^{2}left(a^{2}+a b+b^{2}right)=frac{a-b}{a+b} )
( sin (e, quad a, b>0 )
( quad quad a+b>0 )
and a-b nriel be less than
( a+b )
z) ( frac{a-b}{a+b} )
wict be less than 1
Cbing denominator being to greater than mumarator)
( Rightarrow quad a-b )
( <1 )
( a+b )
Cusing
( O )
( y^{2}+a b+b^{2} leq 1 )
( rightarrow ) Cption
( (B) ) is ( cos x e c t )

DA) SV + (B) 313 - 1 (C) 318 + 2 (D) 31/3 - 2 14. If a, b>0 satisfy a3 + b3 = a - b then (A) a2 + b2 = 1 (B) a2 + ab + b2 <1 (C) a2 + b2 > 1 (D) a2 - b2 = 1 74 74
Solution
