Question

U) ( log _{e} x+log _{e} y+log _{e} 3=k(b-c)+k(c-a)+k(a-b) )
s) ( log _{c}(x y z)=0 )
W) ( log _{e} x^{b+c}+log _{e} y^{2}+a+log _{e} 3^{a+b}=k^{y}left(b^{2}-c^{2}+c^{2}-a^{2}+a^{2}-b^{2}right) )
( =int operatorname{leg}_{e}left(x^{b+c} y^{c+a} z^{a+b}right)=0 Rightarrow x^{b+c} y^{c+a} z^{a+b}=1 )
Hewer proved.

# DU1U, prove that I loge X _loge y _loge z I b-c c-a a-b -, show that: (1) xyz =1 (ii) xºybze = 1 (iii) xb+cyc+aza+b = 1 11

Solution