Question
soLUTION We leave it to the reader to show that ( A^{2}-4 A-5 I=0 )
Now, ( A^{2}-4 A-5 I=O )
( Rightarrow quad A A-4 A=5 I )
( Rightarrow quad(A A) cdot A^{-1}-4 A cdot A^{-1}=5 I cdot A^{-1} )
( Rightarrow Aleft(A A^{-1}right)-4 I=5 A^{-1} )
( Rightarrow A I-4 I=5 A^{-1} )
( Rightarrow A-4 I=5 A^{-1} )
( Rightarrow A^{-1}=frac{1}{5}(A-4) )
( =frac{1}{5} cdotleft{left[begin{array}{cccc}1 & 2 & 2 2 & 1 & 2 2 & 2 & 1end{array}right]-left[begin{array}{ccc}4 & 1 & 0 -3 & 2 & 2 2 & -3 & 2 2 & 2 & -3end{array}right]right. )

EXAMPLE 2 [1 2 27 Show that the matrix A = 2 1 2 satisfies the equation 12 2 1 A2-4A -51 = 0, and hence find A. ІСІ
Solution
