Question

( x^{2}+x+1 int frac{3 x^{3}-5 x^{2}+2 x+4}{3 x^{5}-2 x^{4}+x^{2}-2} )
( left(-y^{3}right) x^{5}+3 x^{4}+3 x^{3} )
( x y )
( -5 x^{4}-3 x^{3}+x^{2} )
( -x^{2}+x^{0}-5 x^{3}+5 x^{2} )
( (t)^{(+)} 2 x^{3}+6 x^{2} )
( frac{2 x^{3}+2 x^{2}+2 x}{4} )
( frac{4 x^{4}-2 x-2}{8 x^{2}+4 x+4} )
( (-)^{(-1)}=1 )
( x(x)<-6 x-6 )
Ba division algorithm ( f(x)=a(x) timesleft(3 x^{3}-5 x^{2}+2 x+4right)+9(x) )
( left(3 x^{5}-2 x^{4}+x^{2}-2right)=left(x^{2}+x+1right)left(3 x^{3}-5 x^{2}+2 x+4right)-6(x+1) )
( (1+1,5)=R cdot 4,5 )

# ezerves of the polynomial p(x) = 2x – 11x +17 11. Divide P(x) by q(x) and check the division algorithm, p(x) = 3x5 – 2x4 + x -2,9(30) x2+x+1 D 12. Find the zernes and vaniful officients of the

Solution