Question

1000020 ecend
WE, ( vec{A}=vec{a} )
( vec{O} B=vec{b} )
( overrightarrow{O C}=vec{c} )
Whe be the midponit of ( frac{1}{beta C} )
The vertor
is of median min
( therefore(b-bar{a}) ), ( t in R )
( vec{x}=a+t(vec{b}) )
( Rightarrow vec{x}=vec{a}+tleft(frac{vec{b}+vec{c}}{2}-vec{a}right), t in R )
( Rightarrow vec{x}=(1-t) vec{a}+tleft(frac{vec{b}+vec{c}}{2}right), t in R )

# F =(1-t) 7+t(ā+C) = c -to+tā + t =r=ē+tā, t eR If a, b, c are the position vectors of the vertices A, B and C respectively, of AABC, the Mar. '13 find the vector equation of the median through the vertex A. minnn Band with respect to the origin are

Solution